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3.2. COMPUTATIONAL METHODS 

NUMERICAL METHODS FOR TRACKING INTERFACES* 

James M. HYMAN 
Center for Nonlinear Studies, Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

An overview is given of special numerical methods for tracking discontinuous fronts and interfaces. These methods include 
surface tracking methods based on connected marker points along the interface, volume tracking methods that track the 
volume occupied by the solution regions bounded by the interfaces, and moving-mesh methods where the underlying mesh is 
aligned and moved with the interface. The pros and cons of the current methods are discussed and a new method is proposed 
that overcomes some of the difficulties encountered in approximating equations with multiple interacting interfaces. 

1. Introduction 

Interface tracking methods are often necessary 
to efficiently compute accurate numerical ap- 
proximations to partial differential equations with 
moving discontinuous interfaces in the solution. 
There are a few well-established algorithms that 
account for these discontinuities, but most are 
numerical schemes? still in their early develop- 
mental stages. No simple rules exist for choosing 
the best method for the more difficult problems. In 
this paper I will give an overview of the current 
methods in order of their ability to handle prob- 
lems of increasing ditllculty. I will then introduce a 
new adaptive moving-mesh scheme and speculate 
on what will be the more significant future devel- 
opments. 

Much of our understanding of the laws of na- 
ture is based on integral equations and constitutive 
relationships that hold across discontinuous inter- 
faces. Away from these discontinuities, where the 
solution is smooth, these equations can be well 
approximated by partial differential equations 
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jScheme - (def): an especially sly or devious plan of action. 
The Random House Dictionary of the English Language, (Ran- 
dom House, New York, 1967). 

(PDEs). Most numerical predictions of the laws of 
nature are based on discrete approximations to 
these PDEs. For these numerical methods to be 
accurate near discontinuities, where the PDEs fail 
to approximate the integral equations, they must 
treat the discontinuity as a special case. Otherwise, 
the method may not accurately approximate the 
physically relevant solution. 

Two commonly used approaches are to smear 
the interface by adding artificial dissipation or 
viscosity to the PDEs and solving this nearby 
problem, or to treat the discontinuity as an inter- 
nal boundary, solving the PDEs away from the 
discontinuity and imposing the appropriate jump 
conditions across this boundary. 

The better artificial dissipation methods are ex- 
tremely easy to implement, perform excellently for 
a restricted class of problems, but are not well 
understood theoretically. One of the more im- 
portant problems they cannot treat adequately is 
tracking a moving internal material interface or 
slip line when the equation-of-state for the two 
materials is radically different. For example, the 
water/air interface of a bubble should not be 
artificially smeared, or the method will not accu- 
rately account for the effect of surface tension on 
its motion. 

Another difficulty with the artificial dissipation 
method occurs when it is used in conjunction with 
an adaptive static rezone method [2, 181. These 
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adaptive methods automatically adjust the mesh so 
that it is dense in regions with sharp transitions 
and sparse where the solution is smooth. The 
artificially smeared discontinuities are likely to 
have the large gradients causing the adaptive mesh 
algorithm to introduce mesh points that resolve 
the structure of the transition layer. This structure 
is often an artifact of the artificial dissipation and 
does not significantly affect the behavior of the 
solution. (If it did, then the artificial dissipation 
method would not have been appropriate.) These 
extra mesh points can greatly increase the compu- 
tational expense without significantly enhancing 
the accuracy of the calculation. 

The interface tracking methods described in this 
paper were developed to overcome the deficiencies 
of the artificial dissipation approach. The tracking 
methods have little or no artificial dissipation near 
the interface since the singularity is directly com- 
puted and treated explicitly as a discontinuity. 
These methods are more difficult to implement, 
perform excellently for a large class of problems, 
but, like artificial dissipation methods, are not well 
understood theoretically for the more difficult 
problems. 

Interface tracking methods can be divided into 
three catagories. In order of increasing flexibility 
and computational complexity, these are surface 
tracking methods, volume tracking methods, and 
moving mesh methods. 

Surface tracking methods track the location of 
the interface by interpolating between marker par- 
ticles along the interface. Because this is a lower 
dimensional problem, the additional effort to accu- 
rately resolve small-subgrid-scale structure in the 
interface is usually small compared with the over- 
all solution time. The surface tracking methods are 
the simplest to implement, until interactions occur 
that change the topology of the interface during 
the computation. 

Volume tracking methods overcome the chang- 
ing topology problems by dividing the domain 
into a union of disjoint solution regions. The 
boundary between these regions is the interface 

location. The regions are identified by marker 
points, or alternatively, the fractional volume of 
each solution region located in each computational 
cell is calculated and advanced during the compu- 
tation by solving an auxiliary evolutionary PDE. 
These fractional volumes can be used to recon- 
struct an approximate interface location at any 
time. Unlike the surface tracking methods, very 
little subgrid scale structure is retained during the 
calculation. 

Moving-mesh methods can be used to track the 
location, account for changes in the interface 
topology, and resolve small-scale structures in the 
interfaces. Here a multivalued solution is defined 
at mesh points located on the interface. The inter- 
face mesh points move with the interface in a 
Lagrangian manner. To prevent the mesh from 
tangling, a dynamic data structure is used so the 
moving mesh points can change their nearest 
neighbors during the calculation. Also, new points 
are added when the mesh becomes sparse or a new 
interface appears, and mesh points are removed 
when they are more dense than necessary for an 
accurate calculation. 

In all the above methods, the location of the 
interface is advanced by solving a lower dimen- 
sional PDE derived from an appropriate constitu- 
tive jump condition. The effect of the interface 
movement is transferred to the solution to the 
original PDEs on either side where the interface is 
treated as a moving boundary. 

2. Surface tracking methods 

In surface tracking methods the interface is 
specified by an ordered set of marker points located 
on the interface [ll, 12, 22, 251. Between these 
points its position is approximated by an inter- 
polant, usually a piecewise polynomial. These 
time-dependent interfaces divide the problem do- 
main into connected regions. The solution defined 
at the marker points and along the interpolated 
interface may be multivalued to account for dis- 
continuities. 
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2.1. Surface representation 

The marker points may be represented by the 
distance from some reference surface such as the 
chain-of-line segments defined by a height func- 
tion (fig. la) or by a parametric interpolant as 
shown (fig. lb). 

The distance function is simpler to implement, 
but the interface deformation is severely limited 
because this representation breaks down if the 
curve becomes multivalued with respect to the 
reference surface. The parameter representation 
does not have these limitations and is only slightly 
more complicated to implement. 

smooth solution algorithm. Both the smooth solu- 
tion and the interface are treated as separate com- 
putational objects. The interface position is stored 
and dynamically updated along with the smooth 
solution away from the interface. The numerical 
method may be implemented to do this simulta- 
neously, or operator splitting may be used, first 
advancing one and then the other. 

2.2. Surface evolution 

Both of these methods can provide the fine 
resolution and detail needed to track small-sub- 
grid-scale structures in the interface in two and 
three space dimensions. This can be especially 
important when tracking an unstable interface. 
The underlying computational grid resolution is 
usually chosen to resolve the structure of the 
smooth solution away from the interface and is 
rarely sufficient to resolve the fine-scale interface 
detail, such as the onset of a slip-line Helmholtz 
instability rollup. 

The evolution equations for the interface are 
lower dimensional differential equations derived 
from constitutive relationships, usually obtained 
by applying the divergence theorem to an integral 
formulation of the physical model. Similar meth- 
ods are used to define an accurate approximation 
to the smooth solution near an interface. This 
approach, sometimes called the finite volume 
method, results in equations for the interface-not 
for the marker points. In practice, however, it is 
the marker points that are evolved. Because of 
this, extra’ care is needed to maintain the ap- 
propriate relationships, such as the conservation 
laws, near the interface. 

The surface tracking methods are hybrid When the underlying PDE system is hyperbolic, 
numerical schemes - splitting the solution process the equations for the interface can be derived by 
into two parts: the interface tracking and the solving one-dimensional Riemann problems nor- 

a b 

Fig. 1. a) Multiple distance functions designate the locations of the interfaces. b) A parametric interpolant designates the locations of 
the interfaces. 
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ma1 to the interface [ll-131. A Riemann problem 
is a type of a nonlinear normal mode expansion 
for a one-dimensional Cauchy problem with initial 
data that is constant everywhere except for a single 
jump discontinuity. The solution evolves into non- 
linear waves that propagate coherently in time. 
For example, a material interface discontinuity 
moves with the underlying fluid velocity, and a 
shock wave moves with the speed given by the 
Rankine-Hugoniot jump conditions. When used 
to advance a 2-D interface in the normal direction, 
curvature effects can be incorporated as source 
terms. 

When multiple waves are emitted in the 
Riemann problem, then a single wave, such as the 
contact discontinuity corresponding to a material 
interface, must be selected and tracked at all the 
points along the same interface. Alternatively, ad- 
ditional interfaces can be inserted to track the new 
discontinuities that arise. 

The constant states used for the Riemann prob- 
lem are the bounding states on either side of the 
interface. A slightly improved version could be 
implemented by using a linear or quadratic varia- 
tion in the states normal to the front, extending 
the ideas of van Leer [28]. The velocities for the 
marker points are taken to be the tracked wave 
velocities normal to the interface. The tangential 
velocities of the underlying solution also contrib- 
ute to the interface movement, but are less 
important, since when the marker points are dis- 
placed tangentially, they remain on the interface. 

In addition to the Riemann problem equations, 
the evolution equations may contain additional 
terms to approximate the effects of surface tension 
[15, 211, flame propagation [l, 3, 261 or phase 
changes. These all influence the boundary condi- 
tions imposed on the smooth solution at the inter- 
face. For example, if the interface were a flame 
front that converts the fuel ahead of the interface 
to burned material behind it, the interface 
boundary conditions would be conservative out- 
flow or inflow conditions, respectively, with the 
appropriate heat source term to account for the 
energy released at the interface. 

The above procedure is simplified if a local 
curvilinear coordinate system orthogonal to the 
interface is employed. The orthogonal coordinate 
system also simplifies the interface boundary con- 
ditions that connect the smooth solution to the 
interface. Additionally, when approximating the 
spatial derivatives, we can smoothly map this coor- 
dinate system onto a fixed regular computational 
grid [19, 241. 

Sometimes the evolution of the interface is sen- 
sitive to small amounts of noise in the computed 
solution on either side, and it may be necessary to 
regularize or smooth the solution states in the 
tangential direction. Glimm, Marchesin, and 
McBryan [ll, 121 average in a circle about each 
marker point on the interface to filter out short 
wavelength fluctuations. Another way to reduce 
the effects of small errors on the motion of the 
interface is to modify the interface evolution equa- 
tions slightly by adding artificial surface tension 
along the interface. 

Instead of solving Riemann problems, the vortex 
methods [3, 261 introduce small lines on surfaces 
of vorticity along the interface. The vortex motion 
is defined by a Hamiltonian system of ordinary 
differential equations with a Coulomb-type inter- 
action term. For viscous PDEs, these equations 
also contain a diffusive term. 

The contour dynamics method of Overman and 
Zabusky [25] follows the motion of point vortices 
along a closed contour line bounding a region of 
constant density or vorticity. The contour velocity 
is obtained from boundary integral equations de- 
rived by applying Green’s theorem to the area 
integral in the Green’s function solution of a Pois- 
son equation. 

2.3. Interpolants 

The accuracy of the surface tracking methods 
depends strongly on stability and accuracy of the 
interpolation method approximating the interface 
location between the marker points. The shape- 
preserving Hermite piecewise-polynomial inter- 
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polants [16] remain consistently well behaved and 
smooth by retaining the convexity and monotonic- 
ity properties of the original data. Therefore, ex- 
traneous bumps or wiggles are not introduced 
between the data points. This is particularly im- 
portant for unstable interfaces such as a 
Rayleigh-Taylor or Buckely-Leverett interface. 

The piecewise-linear interpolant is the simplest 
shape- and area-preserving interpolant, but in- 
troduces fictitious comers in the interface location. 
In fluid flows, unless the solution is artificially 
smoothed, these corners can create unrealistic 
velocities in the smooth solution that eventually 
destroy the global accuracy of the calculation. The 
higher order Hermite piecewise-polynomial inter- 
polants are smoother but can still easily accom- 
modate necessary corners in the interface by 
retaining left and right derivatives at the marker 
points. Usually, cubic piecewise polynomials are 
sufficient. 

As the interface grows or shrinks, the distribu- 
tion of the interface marker points must change to 
continually resolve the interface. The static rezone 
methods [18] use a mesh function or performance 
index based on the arc length and curvature of the 
interface as a guide when removing extraneous 
mesh points or adding new ones when the existing 
points are too dense or sparse. Alternatively, a 
fixed number of marker points can be continu- 
ously redistributed so as to best resolve the inter- 
face. The first approach is usually more efficient in 
2-D calculations where the marker points are easily 
reordered as points are added or deleted. The data 
structure is simpler in the second approach and it 
is more commonly used in 3-D calculations. 

2.4. Interactions 

In many calculations the topology of the inter- 
faces is constantly changing. The interfaces can 
interact with each other, spontaneously disappear, 
or new ones can be created when an existing 
interface bifurcates or is formed by a compression 
wave, a flame ignition, or a phase change. Multiple 

interaction points where three or more interfaces 
meet are common occurrences and also require 
special data structures. 

Fortunately, the interactions are usually a lower 
dimensional event; in 2-D calculations the 1-D 
interfaces intersect at points; in 3-D, the 2-D 
surfaces interact along 1-D lines. Therefore, it 
takes little computer time to identify and track the 
interactions. Unfortunately, the data structure and 
algorithms needed by surface tracking methods to 
account for interactions greatly increase the pro- 
gram complexity. Also, near the interaction many 
of the lower dimensional interface evolution equa- 
tions based on 1-D Riemann problems are no 
longer valid. That is, near an interaction point, the 
solution often is intrinsically 2-D or 3-D and the 
interface motion cannot be well approximated by 
a 1-D Riemann approximation. The reason for 
this is that near the interface the components of 
the solution normal to the interface interact 
strongly with the interface through the interface 
boundary conditions, whereas the tangential com- 
ponents have a weak, if any, interaction with the 
interface. Therefore, away from interactions, 
applying the 1-D jump conditions normal to the 
interface is a valid approximation. Near an inter- 
action, however, the solution cannot be split into 
components that are normal and tangential to 
both interfaces simultaneously and the splitting 
algorithm is no longer valid. 

Simple material interfaces which move with the 
underlying fluid velocity are not a problem, but 
for more complicated interactions, such as an ob- 
lique shock reflection, then a local grid refinement 
may be necessary to reduce the splitting errors. 

These hybrid methods, combining and interface 
tracking algorithm with local grid refinement, are 
also excellent when there is a boundary layer in 
the solution adjacent to the interface. This might 
be caused by the energy generated in a flame front 
or governed by an internal mixing length. If each 
region is being separately solved on an interface- 
fitted curvilinear coordinate system, then standard 
adaptive methods can be used to resolve the 
boundary layer [2, 241. 
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Because of the complexity of handling interac- 
tions and adaptively refining the interface in 3-D, 
to my knowledge, the only surface tracking codes 
that resolve multiple interactions are in l- and 
2-D. In most 2-D codes with interface interactions, 
and in all 3-D codes I know of, the interfaces are 
tracked by a volume tracking method. 

3. Volume tracking methods 

The volume tracking methods are less capable 
than the surface tracking methods in providing 
subgrid-scale resolution, but they can simply and 
accurately account for the interactions of many 
different smoothly varying interfaces. Here, the 
interface tracking equations have the same dimen- 
sion as the underlying PDEs and, therefore, are 
potentially more expensive than the surface track- 
ing methods. In practice, however, the interface 
data need only be stored and the equations solved 
in the cells along or near the interface. This tactic 
increases the computational complexity but im- 
proves the efficiency when the interfaces are well 
separated. 

3.1. Marker and cell 

One of the earliest volume tracking methods for 
material interfaces is the marker and cell (MAC) 
method [29]. Marker particles are scattered ini- 
tially to identify each material region in the calcu- 
lation. These particles are transported in a 
Lagrangian mamer along with the materials. Their 
presence in a computational cell indicates the pres- 
ence of the marked material. The material 
boundary is reconstructed using the marker par- 
ticle densities in the mixed cells with marker par- 
ticles of two or more materials. The interface 
reconstruction scheme may also use the density of 
particles in the surrounding cells to reconstruct a 
more accurate interface location. A moderate 
number of particles must be in the mixed cells to 
reconstruct an accurate interface. If there are only 
a few marker particles, the interface location will 

be poorly defined and sensitive to small errors. 
This often happens in expansion regions unless 
new particles are continually added and deleted 
during the calculation. 

To improve the efficiency of the MAC method, 
we can scatter initial marker particles more densely 
(or only) near the interfaces or, if there are only 
two materials, only use marker particles to identify 
one of the materials. 

The MAC methods do not require special logic 
for colliding surfaces but need many marker par- 
ticles per computational cell to get a well-defined 
interface. Also, numerical errors in transporting 
the marker particles can cause an artificial numeri- 
cal diffusive mixing near the interface resulting in 
a fuzzy interface. The fuzzy interface makes it 
harder to generalize the MAC methods for com- 
plicated interfaces such as detonations, flame fronts 
or multiphase flow problems. To reduce the fuzzi- 
ness far more marker particles than computational 
cells are needed, increasing the computational cost. 
The fractional marker volume methods were de- 
veloped to overcome these drawbacks. 

3.2. Fractional marker volumes 

The fractional marker volume methods (some- 
times called the volume of fluid, VOF [14, 15, 21, 
221, or simple line interface calculation, SLIC [23], 
methods) define the surface by calculating the 
fractional volume of each material occupied in 
each computational cell. These numbers range from 
zero (no material) to one (completely filled with 
material). The interfaces occur in the cells with 
fractional volumes (fig. 2). 

The volume fractions are updated during the 
calculation according to the appropriate advection 
equations. On each time step, the interface posi- 
tion is reconstructed cellwise using the fractional 
volume of a cell and its nearest neighbors. This 
localness is especially good for long thin interfaces 
or fingers. When interfaces collide, the fraction 
volumes are added, and the interface intersections 
are simply accounted for in the reconstruction 
step. 
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Fig. 2. The original interface separating two regions and the associated volume fractions in each computational cell are shown (Za). In 
figs. 2b and 2c are two possible reconstructed interfaces using the rectangular and piecewise-linear fractional volume methods, 
respectively. 

3.3. Interface reconstruction 

Even though the volume fraction in the interface 
cells are between zero and one, the reconstructed 
discontinuity is sharp. Within each cell, the volume 
regions can be represented by unions of rectangles, 
triangles, or regions bounded by piecewise-poly- 
nomial surfaces. Thin rectangles can be used to 
accommodate fingers. The curvature of the inter- 
face can be estimated using finite-difference ap- 
proximates based on the neighboring fractional 
volumes. Although the more complicated methods 
yield a better approximation to the position of the 
interface, they are more prone to numerical diffu- 
sion and nonphysical mixing caused by small pieces 
shedding off the comers of the reconstructed inter- 
face. Imposing monotonicity and convexity con- 
straints [16, 281 on the reconstructed interface 
greatly reduces the shedding problems. 

There are as many fractional volume reconstruc- 
tion schemes as there are practitioners [l, 3, 4, 14, 
15, 20, 21, 23, 261. The best reconstruction algo- 
rithm depends upon the application and the im- 
portance of subgrid scale structure. For example, 
Chorin [3] moditied the original SLIC algorithm 
by allowing for multiple rectangles in a cell and 
developed a SLICer one for flame propagation. 
Barr and Ashurst [l] then combined the ideas of 
slope determination in the VOF method with 
Chorin’s modifications and have one of the SLICest 
methods in use for turbulent flame propagation. 

Another variation of the fractional volume 
method is to maintain and evolve a point on the 
interface in each fractional volume cell to aid the 
reconstruction algorithm. These marker points are 
moved with the interface during the evolution step. 
After each reconstruction, the multiple marker 
points within a single cell are combined to form a 
single new point on the reconstructed interface, 
and new marker points are added along the inter- 
face in cells with no marker particles. This ap- 
proach is similar to the reconnecting dual mesh 
method discussed in the next section. 

If the underlying mesh is not a tensor product 
mesh, then the mapping method can be used to 
reconstruct the interface using fractional volumes 
in the uniform logical reference mesh. The curvi- 
linear mesh in the original domain could be cho- 
sen adaptively to accurately resolve the solution [2, 
181. The fractional volumes of the reconstructed 
interface are easily transferred from one mesh to 
another after a static rezone. 

3.4. Interface evolution 

Once constructed, the interface can be advanced 
using the same techniques as described for the 
surface tracking methods. More often, however, 
they are advanced using a fractional step method. 
That is, the interface is reconstructed and evolved 
in each spatial dimension separately. The frac- 



J. M. Hyman / Numerical methods for tracking interfaces 403 

a b 
I I I 

C 

Fig. 3. The reconstructed interfaces for an unsplit algorithm (a), in the x-sweep (b), and in the y-sweep (c). 

tional step algorithms are more attractive than the 
surface tracking methods for almost all interacting 
surfaces in 2-D and, more so, in 3-D calculations. 
The unsplit fractional volume method is more dif- 
ficult to implement because of the odd shaped 
regions that must be accounted for, such as the 
one shown in fig. 3a. 

In a fractional step method, the interface recon- 
structed in the x-sweep may be different from 
what it is in the y-sweep, (figs. 3b,c). By alter- 
nating the sweep direction, averaging the results, 
or using conservative limiters that preserve the 
symmetry, much of the sweep dependence can be 

4.1. Local adjustment methoak 

When using either a surface or volume tracking 
method, if the reconstructed interface is continu- 
ous, then on each time step a local adjustment in 
the underlying mesh location can be used to ap- 
proximate the interface. Each mesh point within 
one half mesh spacing of the interface is moved to 
the nearest location horizontally or vertically where 
the interface intersects a mesh line. The interface is 
now well approximated by the cell edges and 
diagonals on the new mildly distorted mesh, as 
seen in the example in fig. 4. 

reduced. 

4. Moving mesh methods 

The PDEs are then on the new grid 
treating points on the interface 
moving boundary; 

values for the possibly multi- 
valued solution easily 
selected. 

points near the 
interface easily derived on each time step [19]. 
If the fmite is being used, the 
solution across the interface 

global solution algorithms 
are available 

metho& 

The next logical step is not to have a separate 
algorithm to track the interface, 

solved cell by cell, and the cell 
edges are all treated like interfaces 

inter- 
faces are created, 

volume of existing 

mixing between the different 

easily tracked. 
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Fig. 4. A simple local adjustment of the mesh aligns it with the front, so the interface is located only along cell edges or diagonals. a) 
The original underlying mesh and interface; b) the locally adjusted mesh is aligned with the interface. 

Depending upon the goal of the calculation, any 
one of several moving-mesh methods can be used 
away from the interface [6-10, 13, 171. Unfor- 
tunately, unless the moving cells are allowed to 
change their nearest neighbors in a calculation, 
then continual rezoning is necessary to prevent the 
mesh distortion, in even the simplest flows, from 
destroying the accuracy of the calculation. This is 
shown for the very early stages of a Lagrangian 
Rayleigh-Taylor calculation on a logically rectan- 
gular grid in fig. 5. Soon after the time of this plot, 
numerical errors caused the grid lines to cross and 
the calculation to fail, 

The grid distortion can be somewhat alleviated 
if only the mesh points along specified interfaces 

Fig. 5. Distorted Lagrangian mesh in the early stages of a 
Rayleigh-Taylor instability calculation. 

are required to move with the interface. The grid 
points away from the interface are distributed to 
prevent mesh tangling or to better resolve the 
structure of the smooth solution. In addition, the 
mesh points along the interface can be redistrib- 
uted along the interface using the surface tracking 
rezone methods described earlier. 

The mesh tangling is not caused by the 
Lagrangian equations but is an artifact of the 
mesh data structure. A more flexible data structure 
that prevents mesh tangling is the neighborhood 
grid, where pointers are kept to all the nearest 
neighbors of each mesh point. These are used to 
approximate the equations locally using a finite 
element or finite volume discrete approximation. 
As the mesh moves, the nearest neighbor pointers 
are continually updated. Usually these reconnec- 
tions alone will not completely solve the problem 
of grid resolution and regularity, and some form 
of rezoning is till necessary. But here, adding and 
deleting points is much easier than on a logically 
rectangular or cuboid mesh. 

There has been considerable success in using the 
reconnecting moving neighborhood mesh in fluid 
flows with material interfaces [7-9, 271. These free 
Lagrangian codes, as they are called, could easily 
be adapted for more complicated flows where.the 
interface moves with the shock or flame velocity 
rather than with just the underlying fluid velocity. 
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Fig. 6. The dual computing mesh is advanced according to the appropriate moving mesh equations. At the end of each time step it is 
regularized as in 6c. a) The reference mesh and the dual computing mesh; b) the new dual mesh after one time step; c) the regularized 
dual mesh at the new time. 

The major disadvantage of neighborhood meshes 
is the data structure. Most of the fast and accurate 
numerical methods (and multidimensional plotting 
packages) are for logically rectangular and cuboid 
grids. The accuracy of local discrete approxima- 
tions of second derivative operators is particularly 
poor on neighborhood grids. 

One of the more promising reconnecting mesh 
algorithms retains a logically rectangular or cuboid 
data structure by approximating the solution on 
the dual mesh of a logically rectangular or cuboid 
reference mesh [13, 171. The dual mesh consists of 
one mesh point within each cell of the reference 
mesh (fig. 6a). 

At the beginning of every time step, the mesh is 
regular (one grid point per reference cell). The 
dual mesh is advanced (fig. 6b) according to the 

appropriate moving-mesh equations for the inter- 
face depicted by a solid line in fig. 6. If desired, an 
underlying reference mesh can now be chosen to 
resolve the solution. The mesh is then regularized 
(fig. 6c) by adding new dual mesh points to empty 
cells or combining them in reference cells with 
more than one dual mesh point. In this way, the 
mesh points where the solution is computed can 
continue changing their nearest neighbors while 
maintaining a logically rectangular data structure. 

In addition, the dual mesh computing points 
can be tagged as special interface points (fig. 7a). 
In fig. 7b the dual mesh points, separating materi- 
als q , x and 0, have been advanced forming 
some new mixed cells in the center. In the regulari- 

zation stage (fig. 7c) these are combined conserva- 
tively to form two new triple points. 
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Fig. 7. Interface tracking on the dual mesh. a) Original dual mesh marker points and interface; b) predicted new dual mesh points; c) 
regularized dual mesh and interface. 
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5. Summary and conclusions 

Most 
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